面向5G的传输网络演进与发展探讨
栏目:行业资讯 发布时间:2018-09-13
移动通信网络在大面积普及4G网络以后,中国用户的使用体验和网络速率得到较大提升。

1 5G演进的标准进展与典型场景

移动通信网络在大面积普及4G网络以后,中国用户的使用体验和网络速率得到较大提升。随着技术进步和多方面因素的驱动,美日韩及欧洲的5G测试与商用正在加速,国内方面,工信部也在积极推进5G的进程,IMT2020推进组的5G技术研发验证已从关键技术验证阶段到了技术方案验证阶段,中移动集团也在积极布局5G,加紧进行5G的外场验证。

1.1 3GPP时间表

以目前3GPP标准的节奏,预判2020年试商用能相对比较成熟,而随着产业环境加速的趋势,也可能基于目前的Rel-14版本或Rel-15版本开展试点或试商用,试商用中将更侧重于增强版的移动宽带(eMBB)应用场景。如图1所示。

图1 3GPP标准节奏

1.2 5G的典型应用场景

5G的典型应用场景如图2所示包含eMBB(增强版的移动宽带)应用场景、mMTC(大规模机器通信)应用场景、uRLLC(高可靠低时延通信)应用场景。

图2 5G的三类典型应用场景

这三类场景在5G建网初期最典型的应用是增强版的移动宽带(eMBB)应用场景,比如随时随地高清视频直播和分享、虚拟现实、高速上网等方面。随着物联网的发展,大规模机器通信(mMTC)应用场景应用会越来越多,比如智能抄表、自动停车、智能交通等。相对而言高可靠低时延通信(uRLLC)应用场景在初期应用可能不多,比如自动驾驶汽车、工业互联、远程机械作业控制等会随着5G网络的部署成熟出现应用,但这类应用对传输网时延要求会比较高,在1ms~4ms之间,对网络架构的影响较大。

2 5G布网对传输的关键需求

2.1 超高带宽需求

由于5G的单位面积的接入速率比4G提升1000倍,这里的1000倍一般认为“千倍速率提升=10倍基站密度x10倍频谱带宽x10倍频谱利用率”,在实际应用中,抛开基站密度因素,单基站带宽提升30~50倍。因此,5G基站带宽均值将超过2G,峰值更是超过10G。以S111站型为例,CIR/PIR将达到4G/16G,按每接入环6个站,一个站达到峰值带宽计算,接入环带宽将达到40G,考虑到5G基站的密集程度,100G组网可能性更大,而核心层/汇聚层则有可能达到T级别组网。

2.2 低时延需求

5G定义的场景和需求里面,高可靠低时延通信(uRLLC)应用场景提到端到端1ms延时,低延时主要满足一些特殊场景,相关标准组织提到的主要场景是自动驾驶。但1ms场景存在争议。例如,自动驾驶场景中,100km时速,1ms移动距离约3cm,3cm的移动距离对自动驾驶来说时没有必要的,对安全性也没有威胁。相对而言,比较符合应用实际的S1接口单向时延10ms,分解到传输网延时为2ms,X2/ex2接口单向时延20ms,分解到承载网延时为4ms,所以传输网络以2ms~4ms的低时延考虑较为合理。

2.3 网络分片的需求

5G网络将渗透到社会的各个领域,除了移动互联网,还将实现万物互联,海量的连接设备、不断涌现的各类新业务和应用场景,给5G网络带来丰富应用的同时,也为5G网络的承载提出了不同的传输需求,车联网、移动医疗、工业控制等应用对传输时延要求较苛刻,而数据业务、高清视频则对带宽要求较高,为满足各种业务的需求,同时又最高效地利用无线、承载网络的设备资源,需要对无线、承载网络的资源进行切片,采用不同的资源来承载不同的业务,按需实现网络资源的合理编排。

网络分片需要网络设备硬件和软件平台支持,将与SDN(软件定义网络)结合紧密。

2.4 站间流量的需求

5G场景下,5G高密流量/高密联接的特征将使移动承载流量模型mesh化:基站-基站、EPC-EPC之间的移动时交接流量占可能占比相对4G有较大幅度的提升,流量模型偏向mesh化。站间流量有两个场景,一是基站站间协同的X2/eX2接口而产生的流量,二是部分应用,因为网关/EPC/MEC的位置可能比较低,从而产生了站间流量。站间流量的需求对传输网络的架构也提出了一定的要求。

2.5 高精度时间同步

在超密集组网场景下,基站联合发送对同步提出更高要求:非相邻载波下的联合发送要求时间同步精度为260ns;相邻载波下的联合发送要求时间同步精度为130ns;同一载波下的联合发送要求时间同步精度为65ns。而在65ns的时间同步精度下,即使是基站直接从GPS获取时间,也难以保证该同步精度,需要考虑采用承载网实现高精度的时间同步。

3 面向5G的传输网络演进探讨

3.1 基础资源储备分析

面向5G的发展,基础资源的储备极为关键。考虑高频衰竭实际覆盖缩短,5G基站的密度会是4G的1.5倍左右,微站超密级分布,同时低时延和站间流量需求会对成环结构的网状化提出一定的要求。

基于以上的特点,基础资源的储备关键是:

一是进行局房和汇聚节点等重要节点的资源储备,尤其是汇聚节点自有率的提升和机房面积的提升。首先,推动核心机房的能力储备,5G对于核心节点的装机需求约30~50个机架,功耗约120~200kw,核心机房装机条件的改善和电源、空调等条件的提前储备很关键;其次,中移动的汇聚机房条件并不算好,还有不少依然是租用机房,剩余的装机位也不多,面向5G的布网对这些资源提出了新购以及现网整治以改善装机条件的需求。

二是光交网络网格化的部署和延伸,靠近接入点,实现资源的网格化、有序化、灵活安全的接入。5G基站依然以光交网为主要的光纤接入、组网手段,面对超密集组网的站址接入需求,光交资源需要着重从“密度”和“健康度”两个方面规划考虑。“密度”的维度以综合业务接入区为单位,考察其覆盖半径及接入能力,按照基站站址密度提高到1.5倍考虑,需要着重增强综合业务接入区的覆盖范围并加大二级分纤点的建设。“健康度”的维度则是从“微网格”的角度,考察基础资源的持续可接入能力,对微网格范围内“规整率”、 “覆盖率”、“连通率”、“接入率”等指标推动建设和优化。

三是道路管道的新增或扩容,满足设备组网的需求。面向5G,基础资源层面也需重视管道的加排、疏通建设,要提早进行管道加排,增强线路连通的能力,并推广纺织子管等应用,盘活已建管孔资源,为5G的CRAN和DRAN部署及传输设备的组网做好准备。